Skip to contents

Introduction

The package was designed to make EMODnet vector data layers easily accessible in R. The package allows users to query information on and download data from all available EMODnet Web Feature Service (WFS) endpoints directly into their R working environment. Data are managed as sf objects which are currently the state-of-the-art in handling of vector spatial data in R. The package also allows user to specify the coordinate reference system of imported data.

Installation

You can install the development version of emodnet.wfs from GitHub with:

pak::pak("EMODnet/emodnet.wfs")

Explore the EMODnet WFS services with R

For this tutorial we will make use of the sf, dplyr and mapview packages. The simple features sf package is a well known standard for dealing with geospatial vector data. The package dplyr is a strong library for data manipulation. This package also loads magrittr’s pipe operator %>% (you could also use the base pipe), which allows to write pipelines in R. To visualize geometries, mapview will create quick interactive maps.

Run this line to install these packages:

install.packages(c("sf", "dplyr", "mapview"))

With the emodnet.wfs package, we can explore and combine the data served by the EMODnet lots through OGC Web Feature Services or WFS.

Imagine we are interested in seabed substrates. The first step is to choose what EMODnet lot can provide with these data. For that, we can check the services available with the emodnet_wfs() function.

library(emodnet.wfs)
library(mapview)
library(dplyr)
library(sf)

emodnet_wfs()
#>                                                       service_name
#> 1                                                       bathymetry
#> 2                                                          biology
#> 3                                          biology_occurrence_data
#> 4                  chemistry_cdi_data_discovery_and_access_service
#> 5  chemistry_cdi_distribution_observations_per_category_and_region
#> 6                                           chemistry_contaminants
#> 7                                          chemistry_marine_litter
#> 8                                         geology_coastal_behavior
#> 9                                 geology_events_and_probabilities
#> 10                                         geology_marine_minerals
#> 11                                       geology_sea_floor_bedrock
#> 12                                   geology_seabed_substrate_maps
#> 13                                    geology_submerged_landscapes
#> 14                                                human_activities
#> 15                                                         physics
#> 16                   seabed_habitats_general_datasets_and_products
#> 17       seabed_habitats_individual_habitat_map_and_model_datasets
#>                                                                    service_url
#> 1                                        https://ows.emodnet-bathymetry.eu/wfs
#> 2                                 https://geo.vliz.be/geoserver/Emodnetbio/wfs
#> 3                                 https://geo.vliz.be/geoserver/Dataportal/wfs
#> 4                           https://geo-service.maris.nl/emodnet_chemistry/wfs
#> 5                       https://geo-service.maris.nl/emodnet_chemistry_p36/wfs
#> 6                       https://geoserver.hcmr.gr/geoserver/EMODNET_SHARED/wfs
#> 7                       https://www.ifremer.fr/services/wfs/emodnet_chemistry2
#> 8                           https://drive.emodnet-geology.eu/geoserver/tno/wfs
#> 9                         https://drive.emodnet-geology.eu/geoserver/ispra/wfs
#> 10                          https://drive.emodnet-geology.eu/geoserver/gsi/wfs
#> 11                          https://drive.emodnet-geology.eu/geoserver/bgr/wfs
#> 12                          https://drive.emodnet-geology.eu/geoserver/gtk/wfs
#> 13                          https://drive.emodnet-geology.eu/geoserver/bgs/wfs
#> 14                                  https://ows.emodnet-humanactivities.eu/wfs
#> 15                     https://prod-geoserver.emodnet-physics.eu/geoserver/ows
#> 16            https://ows.emodnet-seabedhabitats.eu/geoserver/emodnet_open/wfs
#> 17 https://ows.emodnet-seabedhabitats.eu/geoserver/emodnet_open_maplibrary/wfs

The column service_name shows services available, while service_url has the corresponding base url to perform a WFS request. The Seabed portal should have the data we are looking for. A WFS client can be created by passing the corresponding service_name to the function emodnet_init_wfs_client(). The layers available to this WFS client are consulted with emodnet_get_wfs_info().

seabed_wfs_client <- emodnet_init_wfs_client(service = "seabed_habitats_general_datasets_and_products")
#> ✔ WFS client created successfully
#> ℹ Service: "https://ows.emodnet-seabedhabitats.eu/geoserver/emodnet_open/wfs"
#> ℹ Version: "2.0.0"

emodnet_get_wfs_info(wfs = seabed_wfs_client)
#> # A tibble: 72 × 9
#> # Rowwise: 
#>    data_source service_name    service_url layer_name title abstract class format
#>    <chr>       <chr>           <chr>       <chr>      <chr> <chr>    <chr> <chr> 
#>  1 emodnet_wfs seabed_habitat… https://ow… art17_hab… 2013… "Gridde… WFSF… sf    
#>  2 emodnet_wfs seabed_habitat… https://ow… art17_hab… 2013… "Gridde… WFSF… sf    
#>  3 emodnet_wfs seabed_habitat… https://ow… art17_hab… 2013… "Gridde… WFSF… sf    
#>  4 emodnet_wfs seabed_habitat… https://ow… art17_hab… 2013… "Gridde… WFSF… sf    
#>  5 emodnet_wfs seabed_habitat… https://ow… art17_hab… 2013… "Gridde… WFSF… sf    
#>  6 emodnet_wfs seabed_habitat… https://ow… art17_hab… 2013… "Gridde… WFSF… sf    
#>  7 emodnet_wfs seabed_habitat… https://ow… art17_hab… 2013… "Gridde… WFSF… sf    
#>  8 emodnet_wfs seabed_habitat… https://ow… art17_hab… 2013… "Gridde… WFSF… sf    
#>  9 emodnet_wfs seabed_habitat… https://ow… carib_eus… 2023… "Output… WFSF… sf    
#> 10 emodnet_wfs seabed_habitat… https://ow… biogenic_… Biog… "This l… WFSF… sf    
#> # ℹ 62 more rows
#> # ℹ 1 more variable: layer_namespace <chr>

Each layer is explained in the abstract column. We can see several layers with the information provided by the EU member states for the Habitats Directive 92/43/EEC reporting. We will select the layers about coastal lagoons, mudflats and sandbanks with their respective layer_name.

habitats_directive_layer_names <- c("art17_hab_1110", "art17_hab_1140", "art17_hab_1150")

emodnet_get_layer_info(
  wfs = seabed_wfs_client,
  layers = habitats_directive_layer_names
)
#> # A tibble: 3 × 9
#> # Rowwise: 
#>   data_source service_name     service_url layer_name title abstract class format
#>   <chr>       <chr>            <chr>       <chr>      <chr> <chr>    <chr> <chr> 
#> 1 emodnet_wfs https://ows.emo… seabed_hab… art17_hab… 2013… "Gridde… WFSF… sf    
#> 2 emodnet_wfs https://ows.emo… seabed_hab… art17_hab… 2013… "Gridde… WFSF… sf    
#> 3 emodnet_wfs https://ows.emo… seabed_hab… art17_hab… 2013… "Gridde… WFSF… sf    
#> # ℹ 1 more variable: layer_namespace <chr>

We are now ready to read the layers into R with emodnet_get_layers(). emodnet.wfs reads the geometries as simple features (See sf package) transformed to 4326 by default. Specifying another map projection is possible by passing a EPGS code or projection string with emodnet_get_layers(crs = "your projection") where crs is a coordinate reference system (CRS). The argument reduce_layers = TRUE stack all the layers in one single tibble. Default is FALSE and returns a list of sf objects, one per layer.

habitats_directive_layers <- emodnet_get_layers(
  wfs = seabed_wfs_client,
  layers = habitats_directive_layer_names,
  reduce_layers = TRUE
)

class(habitats_directive_layers)
#> [1] "sf"         "data.frame"

glimpse(habitats_directive_layers)
#> Rows: 221
#> Columns: 9
#> $ gml_id              <chr> "art17_hab_1110.13", "art17_hab_1110.22", "art17_ha…
#> $ habitat_code        <chr> "1110", "1110", "1110", "1110", "1110", "1110", "11…
#> $ ms                  <chr> "DK", "ES", "ES", "PT", "PT", "PL", "DK", "FR", "UK…
#> $ region              <chr> "ATL", "MAC", "MMAC", "MMAC", "MATL", "MBAL", "MBAL…
#> $ cs_ms               <chr> "U2+", "U1+", "U1+", "XX", "U1-", "U1-", "U1-", "U1…
#> $ country_code        <chr> "Denmark", "Spain", "Spain", "Portugal", "Portugal"…
#> $ habitat_code_uri    <chr> "http://dd.eionet.europa.eu/vocabulary/art17_2018/h…
#> $ habitat_description <chr> "Sandbanks which are slightly covered by sea water …
#> $ geom                <MULTISURFACE [m]> MULTISURFACE (POLYGON ((420..., MULTIS…

Run the following code to have a quick look at the layers geometries

# Transform to Polygon geometry type from Multisurface
if (unique(st_geometry_type(habitats_directive_layers)) == "MULTISURFACE") {
  habitats_directive_layers <- habitats_directive_layers %>%
    st_cast(to = "GEOMETRYCOLLECTION") %>%
    st_collection_extract(type = "POLYGON")
}

# Visualize
map <- mapview(habitats_directive_layers, zcol = "habitat_description", burst = TRUE)

map
plot of chunk unnamed-chunk-6
plot of chunk unnamed-chunk-6

EMODnet provides also physics, chemistry, biological or bathymetry data. Explore all the layers available with.

More information

References

Blondel, Emmanuel. (2020, May 27). ows4R: R Interface to OGC Web-Services (Version 0.1-5). Zenodo. https://doi.org/10.5281/zenodo.3860330

Flanders Marine Institute (2019). Maritime Boundaries Geodatabase, version 11. Available online at https://www.marineregions.org/. https://doi.org/10.14284/382.

Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2020). dplyr: A Grammar of Data Manipulation. R package version 1.0.2.https://CRAN.R-project.org/package=dplyr

Pebesma E (2018). “Simple Features for R: Standardized Support for Spatial Vector Data.” The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009, https://doi.org/10.32614/RJ-2018-009.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Tim Appelhans, Florian Detsch, Christoph Reudenbach and Stefan Woellauer (2020). mapview: Interactive Viewing of Spatial Data in R. R package version 2.9.0. https://CRAN.R-project.org/package=mapview

Code

Please cite this package as:

Anna Krystalli (2020). emodnet.wfs: Access EMODnet Web Feature Service data through R. R package version 0.0.2. https://github.com/EMODnet/emodnet.wfs. Integrated data products created under the European Marine Observation Data Network (EMODnet) Biology project (EASME/EMFF/2017/1.3.1.2/02/SI2.789013), funded by the by the European Union under Regulation (EU) No 508/2014 of the European Parliament and of the Council of 15 May 2014 on the European Maritime and Fisheries Fund.