Skip to contents

NIOZdata provides macrofauna data at 4 sites for running the BFIAT model tools.

Format

  • **NIOZdata** is a list with 5 tables .

    • density a data.frame with the station names, taxon, density, biomass (wet weight) and sampling date.

    • stations a data.frame with the station names, x and y positions, depth and the number of samples on which the data were based.

    • taxonomy a data.frame with column names taxon, genus, family, order, class, phylum and AphiaID.

    • fishing a data.frame with the species traits necessary for estimating the fishing parameters; columns are taxon, 0, 0-5, 5-15, 15-30, >30, Age.at.maturity, r.

    • contours a list with the x, y, z values of the contours (for use with map_key or map_legend).

    • abiotics a data.frame with abiotic conditions (depth, D50, silt percentage).

    • sar a data.frame with fishing intensities for the stations, per metier and per year; columns are station, sandy, gear, year, sar, gpd, where metier is: TBB, OT: beam, otter trawl; DRB: dredge, SN: seine.

Author

Karline Soetaert <karline.soetaert@nioz.nl> Olivier Beauchard

References

Dataset from the Vlakte van de Raan:

J. Tiano, J. Depestele, G. Van Hoey, J. Fernandes, P. van Rijswijk, and K. Soetaert, 2022. Trawling effects on biogeochemical processes are mediated by fauna in high energy biogenic reef-inhabited coastal sediments. Biogeosciences, 19, 2583-2598, 2022

Dataset from the Frisian Front:

Tiano, J. C., R. Witbaard, M.J.N. Bergman, P. van Rijswijk, A. Tramper, D. van Oevelen, K. Soetaert, 2019. Acute impacts of bottom trawl gears on benthic metabolism and nutrient cycling. ICES journal of Marine Science, fsz060, https://doi.org/10.1093/icesjms/fsz060.

Tiano, J., van der Reijden, K, O'Flynn, S, Beauchard, O, van der Ree, S, van der Wees, J, Ysebaert, T, Soetaert, K., 2020. Experimental assessment of bottom trawling finds significant effects on epifauna and juvenile infauna. Marine Environmental Research, 159, 11 p., 104964. https://doi.org/10.1016/j.marenvres.2020.104964

Dataset from the Dogger Bank and Fladen Ground:

Emil De Borger, Ulrike Braeckman, Karline Soetaert, 2021. Rapid organic matter cycling in North Sea sediments. Continental shelf research, vol. 214, 2021, doi:10.1016/j.csr.2020.104327.

See also

Traits_nioz for trait data from package Btrait.

MWTL for density data from package Btrait.

Details

Data from four North Sea stations was used in NIOZdata.

  • Vlakte_van_de_Raan The sandy, high metabolism site uses averaged data from 59 boxcores from the Vlakte van de Raan (Tiano et al., 2022). Faunal samples for this site were processed at the Flanders Research Institute for Agriculture, Fisheries and Food (NIOZ).

  • FrieseFront The high metabolism, muddy site, uses information from 25 boxcore samples in the Frisian Front (Tiano et al., 2019, 2020) with faunal samples processed at the Netherlands Institute for Sea Research (NIOZ) and Fugro.

  • DoggerbankData for the low metabolism sandy site were collected from three boxcore samples from the Dogger Bank (De Borger et al., 2021) and were processed at the NIOZ.

  • FladenGround Data for the low metablism muddy sites were collected from three boxcore samples from the Fladen Grounds (De Borger et al., 2021) and were processed at the NIOZ.

Examples


##-----------------------------------------------------
## Show contents of the NIOZ data sets
##-----------------------------------------------------

metadata(NIOZdata$density)
#>         name                                description          units
#> 1    station                               station name               
#> 2       date                    sampling date, a string               
#> 3      taxon taxon name, checked by worms, and adjusted               
#> 4    density                      species total density individuals/m2
#> 5 biomass_ww                   species total wet weight       gAFDW/m2
head(NIOZdata$density)
#>        station                taxon   density   biomass_ww      date
#> 1 FladenGround      Ampelisca gibba  4.866667 8.066667e-03 2017-2019
#> 2 FladenGround  Amphictene auricoma  4.866667 1.375000e-01 2017-2019
#> 3 FladenGround Amphipholis squamata  9.700000 2.366667e-03 2017-2019
#> 4 FladenGround     Amphiura chiajei 33.966667 1.835667e+00 2017-2019
#> 5 FladenGround    Arctica islandica  9.733333 2.957744e+02 2017-2019
#> 6 FladenGround    Argissa hamatipes  4.866667 1.933333e-03 2017-2019

metadata(NIOZdata$fishing)
#>              name                                               description
#> 1               0                             proportion living ON sediment
#> 2             0-5    proportion living in upper 5 cm of the sediment, [0,1]
#> 3            5-15                   proportion living in 5-15cm depth slice
#> 4           15-30                  proportion living in 15-30cm depth slice
#> 5             >30                    proportion living in >30cm depth slice
#> 6 Age.at.maturity                                           age at maturity
#> 7               r rate of increase, estimated as 5.31*0.788/Age.at.maturity
#>   units
#> 1     -
#> 2     -
#> 3     -
#> 4     -
#> 5     -
#> 6 years
#> 7 /year
head(NIOZdata$fishing)
#>                   taxon    0    0-5   5-15 15-30 >30 Age.at.maturity        r
#> 1 Abludomelita obtusata 0.50 0.5000 0.0000     0   0             0.5 8.330328
#> 2                  Abra 0.00 0.7500 0.2500     0   0             0.5 8.330328
#> 3             Abra alba 0.00 0.5000 0.5000     0   0             0.5 8.330328
#> 4           Abra nitida 0.00 1.0000 0.0000     0   0             0.5 8.330328
#> 5 Abyssoninoe hibernica 0.25 0.1875 0.5625     0   0             3.5 1.190047
#> 6   Acrocnida brachiata 0.00 0.0000 1.0000     0   0             4.0 1.041291

metadata(NIOZdata$sar)
#>    name                                                description units
#> 1 sandy              sandy sediment (based on Md grainsize) or not     -
#> 2  year                                        year of the fishing     -
#> 3  gear metier; TBB, OT: beam, otter trawl; DRB: dredge, SN: seine     -
#> 4   sar           annual swept area ratios for the surface (0-2cm)   /yr
#> 5   gpd                          estimated gear penetration depths    cm
NIOZdata$sar
#>               station sandy gear year         sar gpd
#> 1          Doggerbank  TRUE   OT 2009 0.486488173 1.1
#> 2          Doggerbank  TRUE   SN 2009 0.547372942 1.1
#> 3          Doggerbank  TRUE  TBB 2009 0.240543916 1.9
#> 4         FrieseFront  TRUE   OT 2009 0.187068891 1.1
#> 5         FrieseFront  TRUE   SN 2009 0.001840929 1.1
#> 6         FrieseFront  TRUE  TBB 2009 0.888341978 1.9
#> 7  Vlakte_van_de_Raan  TRUE   OT 2009 1.474256306 1.1
#> 8  Vlakte_van_de_Raan  TRUE  TBB 2009 3.690922725 1.9
#> 9          Doggerbank  TRUE   OT 2010 0.434391462 1.1
#> 10         Doggerbank  TRUE   SN 2010 0.995565492 1.1
#> 11         Doggerbank  TRUE  TBB 2010 0.436246909 1.9
#> 12        FrieseFront  TRUE   OT 2010 0.031755774 1.1
#> 13        FrieseFront  TRUE  TBB 2010 1.364653823 1.9
#> 14 Vlakte_van_de_Raan  TRUE   OT 2010 1.797672553 1.1
#> 15 Vlakte_van_de_Raan  TRUE  TBB 2010 4.712480210 1.9
#> 16         Doggerbank  TRUE   OT 2011 0.818700043 1.1
#> 17         Doggerbank  TRUE   SN 2011 0.140292008 1.1
#> 18         Doggerbank  TRUE  TBB 2011 0.063568572 1.9
#> 19        FrieseFront  TRUE   OT 2011 0.042217804 1.1
#> 20        FrieseFront  TRUE   SN 2011 0.001584465 1.1
#> 21        FrieseFront  TRUE  TBB 2011 0.185835365 1.9
#> 22 Vlakte_van_de_Raan  TRUE   OT 2011 0.717074950 1.1
#> 23 Vlakte_van_de_Raan  TRUE  TBB 2011 3.431231733 1.9
#> 24         Doggerbank  TRUE   OT 2012 0.526947324 1.1
#> 25         Doggerbank  TRUE   SN 2012 0.474284890 1.1
#> 26         Doggerbank  TRUE  TBB 2012 0.503431328 1.9
#> 27        FrieseFront  TRUE   OT 2012 0.037232896 1.1
#> 28        FrieseFront  TRUE  TBB 2012 1.609863914 1.9
#> 29 Vlakte_van_de_Raan  TRUE   OT 2012 1.247629667 1.1
#> 30 Vlakte_van_de_Raan  TRUE  TBB 2012 5.894754041 1.9
#> 31         Doggerbank  TRUE   OT 2013 0.257876886 1.1
#> 32         Doggerbank  TRUE   SN 2013 0.562245241 1.1
#> 33         Doggerbank  TRUE  TBB 2013 0.670200749 1.9
#> 34        FrieseFront  TRUE   OT 2013 0.503014834 1.1
#> 35        FrieseFront  TRUE   SN 2013 0.009670976 1.1
#> 36        FrieseFront  TRUE  TBB 2013 1.024208144 1.9
#> 37 Vlakte_van_de_Raan  TRUE   OT 2013 0.719956749 1.1
#> 38 Vlakte_van_de_Raan  TRUE  TBB 2013 5.718325789 1.9
#> 39         Doggerbank  TRUE   OT 2014 1.685672337 1.1
#> 40         Doggerbank  TRUE   SN 2014 1.217272418 1.1
#> 41         Doggerbank  TRUE  TBB 2014 0.467368300 1.9
#> 42        FrieseFront  TRUE   OT 2014 0.467224344 1.1
#> 43        FrieseFront  TRUE   SN 2014 0.003162743 1.1
#> 44        FrieseFront  TRUE  TBB 2014 0.581182560 1.9
#> 45 Vlakte_van_de_Raan  TRUE   OT 2014 0.293471556 1.1
#> 46 Vlakte_van_de_Raan  TRUE  TBB 2014 4.723476517 1.9
#> 47         Doggerbank  TRUE   OT 2015 0.624384332 1.1
#> 48         Doggerbank  TRUE   SN 2015 0.912954313 1.1
#> 49         Doggerbank  TRUE  TBB 2015 1.039779153 1.9
#> 50        FrieseFront  TRUE   OT 2015 0.289381537 1.1
#> 51        FrieseFront  TRUE  TBB 2015 0.280611822 1.9
#> 52 Vlakte_van_de_Raan  TRUE   OT 2015 0.577732637 1.1
#> 53 Vlakte_van_de_Raan  TRUE  TBB 2015 5.662960904 1.9
#> 54         Doggerbank  TRUE   OT 2016 0.514820697 1.1
#> 55         Doggerbank  TRUE   SN 2016 0.064396165 1.1
#> 56         Doggerbank  TRUE  TBB 2016 0.480204930 1.9
#> 57        FrieseFront  TRUE   OT 2016 0.222905548 1.1
#> 58        FrieseFront  TRUE  TBB 2016 0.341281431 1.9
#> 59 Vlakte_van_de_Raan  TRUE   OT 2016 0.556322542 1.1
#> 60 Vlakte_van_de_Raan  TRUE  TBB 2016 8.777992048 1.9
#> 61         Doggerbank  TRUE   OT 2017 0.388396311 1.1
#> 62         Doggerbank  TRUE   SN 2017 0.130649499 1.1
#> 63         Doggerbank  TRUE  TBB 2017 0.172858813 1.9
#> 64        FrieseFront  TRUE   OT 2017 0.028675558 1.1
#> 65        FrieseFront  TRUE   SN 2017 0.080483066 1.1
#> 66        FrieseFront  TRUE  TBB 2017 0.072245080 1.9
#> 67 Vlakte_van_de_Raan  TRUE   OT 2017 0.097936917 1.1
#> 68 Vlakte_van_de_Raan  TRUE  TBB 2017 6.855648326 1.9
#> 69         Doggerbank  TRUE   OT 2018 0.875692993 1.1
#> 70         Doggerbank  TRUE   SN 2018 0.016549367 1.1
#> 71         Doggerbank  TRUE  TBB 2018 0.080756233 1.9
#> 72        FrieseFront  TRUE   OT 2018 0.060393842 1.1
#> 73        FrieseFront  TRUE   SN 2018 0.350010585 1.1
#> 74        FrieseFront  TRUE  TBB 2018 0.318602811 1.9
#> 75 Vlakte_van_de_Raan  TRUE   OT 2018 0.003069557 1.1
#> 76 Vlakte_van_de_Raan  TRUE  TBB 2018 4.918896515 1.9
#> 77         Doggerbank  TRUE   OT 2019 1.492480999 1.1
#> 78         Doggerbank  TRUE   SN 2019 0.078015624 1.1
#> 79         Doggerbank  TRUE  TBB 2019 0.026856502 1.9
#> 80        FrieseFront  TRUE   OT 2019 0.055471966 1.1
#> 81        FrieseFront  TRUE   SN 2019 0.077461767 1.1
#> 82        FrieseFront  TRUE  TBB 2019 0.128991817 1.9
#> 83 Vlakte_van_de_Raan  TRUE   OT 2019 0.019741463 1.1
#> 84 Vlakte_van_de_Raan  TRUE  TBB 2019 6.654184542 1.9
#> 85         Doggerbank  TRUE   OT 2020 0.350662800 1.1
#> 86         Doggerbank  TRUE   SN 2020 0.027000360 1.1
#> 87         Doggerbank  TRUE  TBB 2020 0.075288460 1.9
#> 88        FrieseFront  TRUE   OT 2020 0.206650225 1.1
#> 89        FrieseFront  TRUE   SN 2020 0.011735778 1.1
#> 90        FrieseFront  TRUE  TBB 2020 0.227015173 1.9
#> 91 Vlakte_van_de_Raan  TRUE  TBB 2020 6.975363901 1.9


##-----------------------------------------------------
## SPECIES data
##-----------------------------------------------------

head(NIOZdata$density)
#>        station                taxon   density   biomass_ww      date
#> 1 FladenGround      Ampelisca gibba  4.866667 8.066667e-03 2017-2019
#> 2 FladenGround  Amphictene auricoma  4.866667 1.375000e-01 2017-2019
#> 3 FladenGround Amphipholis squamata  9.700000 2.366667e-03 2017-2019
#> 4 FladenGround     Amphiura chiajei 33.966667 1.835667e+00 2017-2019
#> 5 FladenGround    Arctica islandica  9.733333 2.957744e+02 2017-2019
#> 6 FladenGround    Argissa hamatipes  4.866667 1.933333e-03 2017-2019

# create summaries
SUMM <- with(NIOZdata$density,
   get_summary(descriptor = station, 
               taxon      = taxon, 
               value      = density))

SUMM$density   # The number of species per station
#>           descriptor     value
#> 1         Doggerbank  1519.200
#> 2       FladenGround  1169.767
#> 3        FrieseFront  1322.425
#> 4 Vlakte_van_de_Raan 20597.541

SUMM$taxa      # number of taxa
#>           descriptor taxon
#> 1         Doggerbank    61
#> 2       FladenGround    51
#> 3        FrieseFront    57
#> 4 Vlakte_van_de_Raan    81

# The number of times a species has been found
Nocc <- tapply(X     = NIOZdata$density$station, 
               INDEX = NIOZdata$density$taxon, 
               FUN   = length)
               
               
# most often encountered taxa
N_occ  <- SUMM$occurrence

tail(N_occ[order(N_occ[,2]), ])
#>                    taxon occurrence
#> 65               Glycera          3
#> 82   Kurtiella bidentata          3
#> 136          Ophiuroidea          3
#> 181    Spiophanes bombyx          3
#> 186  Sthenelais limicola          3
#> 189 Tellimya ferruginosa          4


##-----------------------------------------------------
## ABIOTICS data
##-----------------------------------------------------

summary(NIOZdata$abiotics)
#>    station              depth             D50              silt       
#>  Length:4           Min.   : 10.00   Min.   : 57.00   Min.   : 0.000  
#>  Class :character   1st Qu.: 22.00   1st Qu.: 78.75   1st Qu.: 6.225  
#>  Mode  :character   Median : 30.00   Median :148.00   Median :23.150  
#>                     Mean   : 51.25   Mean   :142.50   Mean   :21.575  
#>                     3rd Qu.: 59.25   3rd Qu.:211.75   3rd Qu.:38.500  
#>                     Max.   :135.00   Max.   :217.00   Max.   :40.000  
#>       sar            subsar            gpd       
#>  Min.   :1.239   Min.   :0.3788   Min.   :1.550  
#>  1st Qu.:1.744   1st Qu.:0.4845   1st Qu.:1.670  
#>  Median :2.545   Median :0.6841   Median :1.941  
#>  Mean   :3.159   Mean   :1.2416   Mean   :1.970  
#>  3rd Qu.:3.961   3rd Qu.:1.4413   3rd Qu.:2.241  
#>  Max.   :6.308   Max.   :3.2193   Max.   :2.449  

NIOZabiot <- merge(NIOZdata$stations, NIOZdata$abiotics, 
                   by = "station")
                   
with(NIOZabiot, 
   map_key(x, y, colvar = silt, 
           contours = NIOZdata$contours, draw.levels = TRUE, 
           main = "silt fraction",
           pch = 16))


# show the different abiotic data sets
metadata(NIOZdata$abiotics)
#>     name                                         description      units
#> 1  depth                                         water depth          m
#> 2    D50                                   Median grain size micrometer
#> 3   silt                    silt fraction (0.002 to 0.075mm)          %
#> 4    sar    annual swept area ratios for the surface (0-2cm)        /yr
#> 5 subsar  annual swept area ratios for the subsurface (>2cm)        /yr
#> 6    gpd                   estimated gear penetration depths         cm

##-----------------------------------------------------
## From long format to wide format (stations x species)
##-----------------------------------------------------

NSwide <- with (NIOZdata$density, 
     l2w_density(descriptor  = station, 
                 taxon       = taxon, 
                 value       = density))

PP <- princomp(t(NSwide[,-1]))
if (FALSE) { # \dontrun{
 biplot(PP)
} # }

##-----------------------------------------------------
## Community weighted mean score.
##-----------------------------------------------------

# Traits estimated for absences, by including taxonomy 

NStrait.lab <- metadata(Traits_nioz)

trait.cwm <- get_trait_density (wide           = NSwide, 
                               trait          = Traits_nioz, 
                               taxonomy       = NIOZdata$taxonomy,
                               trait_class    = NStrait.lab$trait, 
                               trait_score    = NStrait.lab$score, 
                               scalewithvalue = TRUE)

head(trait.cwm, n=c(4, 4))  
#>           descriptor Age.at.maturity Annual.fecundity Biodeposition
#> 1         Doggerbank       0.2004247        0.2706527     0.1343697
#> 2       FladenGround       0.3002824        0.2531072     0.1368066
#> 3        FrieseFront       0.6378947        0.4149532     0.2632602
#> 4 Vlakte_van_de_Raan       0.0884499        0.5374093     0.4180760

# add station information
Stations.traits <- merge(NIOZdata$stations,  trait.cwm, 
                         by.x = "station", 
                         by.y = "descriptor")

##-----------------------------------------------------
## Maps
##-----------------------------------------------------

par(mfrow=c(2,2))

with(Stations.traits, 
   map_key(x, y, colvar = Biodeposition,
           contours = NIOZdata$contours, 
           main     = "Biodeposition", 
           pch = 16))
          
with(Stations.traits, 
   map_key(x, y, colvar = Biodiffusion,
           contours = NIOZdata$contours, 
           main     = "Biodiffusion", 
           pch = 16))
           
with(Stations.traits, 
   map_key(x, y, colvar = Biostabilisation,
           contours = NIOZdata$contours, 
           main     = "Biostabilisation", 
           pch = 16))
           
with(Stations.traits, 
   map_key(x, y, colvar = Burrow.width,
           contours = NIOZdata$contours, 
           main     = "Burrow width", 
           pch = 16))


##-----------------------------------------------------
## Show the depth contours
##-----------------------------------------------------

map_key(contours    = NIOZdata$contours, 
        draw.levels = TRUE, 
        key.levels  = TRUE, 
        col.levels  = jet.col(100))

# Use a different color scheme
collev <- function(n) 
   c("black", ramp.col(col = c("darkgreen", "darkblue"), 
                       n   = 101))

map_key(contours    = NIOZdata$contours, 
       draw.levels = TRUE, 
       col.levels  = collev,
       key.levels  = TRUE, 
       lwd         = 2)